The MST of Symmetric Disk Graphs
نویسنده
چکیده
Consider an n-point metric space M = (V, δ), and a transmission range assignment r : V → R+ that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communication networks. Abu-Affash, Aschner, Carmi and Katz (SWAT 2010, [1]) showed that for any n-point 2-dimensional Euclidean space M , the weight of the MST of every connected SDG for M is O(logn) ·w(MST (M)), and that this bound is tight. However, the upper bound proof of [1] relies heavily on basic geometric properties of constant-dimensional Euclidean spaces, and does not extend to Euclidean spaces of super-constant dimension. A natural question that arises is whether this surprising upper bound of [1] can be generalized for wider families of metric spaces, such as high-dimensional Euclidean spaces. In this paper we generalize the upper bound of Abu-Affash et al. [1] for Euclidean spaces of any dimension. Furthermore, our upper bound extends to arbitrary metric spaces and, in particular, it applies to any of the normed spaces lp. Specifically, we demonstrate that for any n-point metric space M , the weight of the MST of every connected SDG for M is O(logn) · w(MST (M)). A preliminary version of this paper is to appear in Proceedings of the 12th International Symposium on Algorithms and Data Structures (WADS), 2011. Department of Computer Science, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel. E-mail: {shayso}@cs.bgu.ac.il This research has been supported by the Clore Fellowship grant No. 81265410 and by BSF grant No. 2008430. Partially supported by the Lynn and William Frankel Center for Computer Sciences.
منابع مشابه
The MST of Symmetric Disk Graphs Is Light
Symmetric disk graphs are often used to model wireless communication networks. Given a set S of n points in R (representing n transceivers) and a transmission range assignment r : S → R, the symmetric disk graph of S (denoted SDG(S)) is the undirected graph over S whose set of edges is E = {(u, v) | r(u) ≥ |uv| and r(v) ≥ |uv|}, where |uv| denotes the Euclidean distance between points u and v. ...
متن کاملThe MST of Symmetric Disk Graphs (in Arbitrary Metrics) is Light
Consider an n-point metric M = (V, δ), and a transmission range assignment r : V → R+ that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communication ne...
متن کاملThe MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light
Consider an n-point metric space M = (V, δ), and a transmission range assignment r : V → R that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communicati...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کامل